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As we know, the purpose of PoincarC’s method is to construct periodic solutions of non- 
linear systems, differential equations of which contain a small parameter. We assume that 
when this small parameter becomes equal to zero, tbe order of the system does not change. 

The method was firat proposed by Poincari in the early 90’s of the last century, as an 

aid in solving problems in celestial mechanics [1 and 21. Later, the method found applica- 
tions in other ffelds such as general mechanics, electrical engineering and physics. 

At present, Poincarb’s method remains one of the basic tools for investigating nonlinear 
oscillations. Initially it was used mainly in conjunction with quasi-linear systems, but grad- 
ually it had spread to other forms of nonlinear systems while continuing to undergo various 
improvements. 

The method is based on a special manner of selecting initial conditions for the system 
in question. The choice is subject to the requirement that conditions of periodicity of solu- 
tions are fulfilled. From now on, we shall use the name “PoincarC’s method” to describe a 
method of constructing periodic solutions, which is based on the original Poincarg’s idea of 
selection of initial conditions. 

A large amount of literature on the PoincarC’s method exists. We shall only mention books 
of Andronov, Vitt and Khaikin 

\ 

31, Bulgakov [4] and Malkin [5 and 61, all on nonlinear oscil- 
lations. A book by Duboshin [7 on celestial mechanics contains an exposition of the method 
which is closest to its original form. From foreign literature we mention Minorsky [8]. 

It should be noted that no attention was paid, during the development of the method, to 
cases which eventually necessitated the system to be treated as degenerate.(+) These were 
found, however, to be cases of apparent degeneracy which could be removed. Proofs of fun- 
damental theorems of existence of solutions were found, in these cases, to be much more 
complex and construction of periodic solutions also encountered difficulties. 

In this paper we adopt a somewhat different method of application of the basic idea of 
Poincar& We take into account all conditions leading to the possibility of fictitious degen- 
eracy of the system. Next, by avoiding these cases we are able to simplify the method con- 
siderably. Later when we derive the method, we shall refer to several works illustrating ap- 
plications of the aimplified method to various problems. 

First we shall consider a nonautonomous nonlinear system containing n first order Eqs. 

dxs - = x, (t, Xl, . . . , &, p) 
dt (s = 1, * . . . n) 

Let X. be analytic functions of zt,..., x,, and ~1 sin some region of variation of xi,..., x n 

9 We shall use the name “degenerate system” to describe a system in which the functional 
determinant of auxilliary equations obtained from the conditions of periodicity and refer- 
ring to increments in initial values of the generating system, becomes equal to zero. See 
Formula (18) below. 
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when O&p <b, and let Xa be, in addition, continuous periodic functions of time with pe- 
riod equal to 2n. 

When & = 0, system (If becomes a so called generating system. Let a general solution 
of the generating system be x,,(t) and let us denote initial values of the generating solu- 
tion bv 

Go (0) = hs (s = 1,. . .( ?a). 

When any one of the equations of the generating system has a term on the right-hand 
side which is a function of t only, then initial conditions can be given in a slightly differ 
ent form (see e.g. 1911 

where a, are known and h, are parameters to be determined. These parameters will not, in 
general, coincide with arbitrary constants of integration, but the amount of parameters cq- 
‘uals the amount of constants. Therefore we csn find the constants of integration if we know 
h l * 

Two cases are possible. In the first case a general solution of the generating system is 
periodic, and such a solution represents a family of solutions dependent on n parameters A, 
In the second case the sohttion is not periodic, whereupon we assume that either one or 
several families of periodic solutions dependent on m 6s < nl parameters h, or, one or sev- 
era1 isolated periodic solutions can be separated from the general nonperiodic solution. 

Clearly, the purpose of PoincarC’s method is to construct all periodic solutions of (1) 
which, at ,u = 0, become periodic solutions of the generating system. 

From this it foliows that when periodic solutions are singled out from the general aoln- 
tion of the generating system, it is important that they should embrace all possible periodic 
solutione possessing the same period. 

Thus some of the parameters or, in the case of isolated solutions, all parameters hm, can 
be found from the conditions of periodicity of the generating solution. 

In the general case initial conditions for (11 are written as 

xs (0) = as + hs + P, (41 
where ,8, are small additional terms dependent on g and becoming zero when p = 0. In accor- 
dance with Poincark’s idea, choice of h_ and @_ implements the construction of periodic 
solutions of the system. 

_ 

It should be pointed out that parameters h, and #!?a always enter initial conditions as a 
sum h 
ted so ntions of the generating system, all of them can be determined in advance. However, I 

+ 8,. We have said before that some of the parameters h, or, in the case of isola- 

in what follows, we shall regard all 8, as unknowns. 
The above mentioned property of parameters h, and fl was not used before(*), Poincark 

and other authors who elaborated or just applied Poincarg’s method all used h, as nnconnec- 
ted with &. 

We note that in some problems initial conditions are independent only for first k functions 
zc,(t). For the remainingn-k fnnctions, initial conditions depend on initial con.ditions of the 
preceding functions and on the parameter CL, i.e. 

I, (0) = a, + ‘ps_,: @I + Plr . - . , h + I-L PL) (s = k + 1, . . ., n) (51 

Were Q?_* are analytic functions of their arguments, vanishing when f.t = 0. The amount 
of k may range, in various problems, from 1 to n. Such a case was first investigated by Mal- 
kin [ 5 and 61 w h en constructing periodic solutions of quasi-linear nonautonomous systems 
described by first order equations when not all natural frequencies of the generating system 
are equal either to zero or to an integer. The analogous case with second order equations 
was investigated in [ 121. S UC a case is also encountered in autonomous quasi-linear sys- h 
tems when not all natural frequencies are mutually commeasurable (131. 

The above property of ha and 18, has important corollaries. Since (11 is analytic, its sol- 
ution can be given in terms of analytic functions of independent initial conditions, and of a 
small parameter ,u. We shall write this solution as 

*l This property was utilized first in the author’s apera on quasi-linear systems and then 
in Kopnins papers on almost arbitrary systems 10 and II]. P 
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hk + hi> P (s=i,...,n) (6) 

When /?i, = . . . = ;;: 0, f unctions C,,(r) become ~,u(tl. Moreover when t = 0, we have 

CsO(0) = a,+ h, + P,, C,,(O)= 0 (m=kZ...) (7) 

of solution of (11 can be written as 

h, + &, p) - x, (24 - 5, (0) = 0 (s= 1,. . ., n) (8) 
Functions $a are analytic functions of their arguments. First k conditions of periodi- 

city yield 6, and 8,. Remaining n-k conditions are used to determine initial functions Qt_* 

when s = k + l,,.., n. Thus, construction of periodic solutions of (1) by Poincarg’s method 
is reduced to determination of k parameters ha, and k functions @, (~1 from Eqs, 

SJ(ht+Pl,...,hk+PkirIL)=O (s = 1,. . ., k) (91 

Some of the functions $ may have the form tie = ~$a +, i.e. may contain p as a mnlti- 

plier. Corresponding condit!ons of periodicity are then separated into 

It =o, *,* = 0 

The first of them means that function x *u(r) is periodic for all values of Be, while the 
second condition can be written as 

m 

(10) 

Let us divide (when it is possible1 the relations representing initial periodicity condi- 
tions byp, and neglect the superscript +, while retaining the previous notation for $e. 

Since functions 0, (~1 have the property that /3,(O) =O, h, should satisfy the following 
Eqs.: 

$(hl,...,hk,O)=O - (s=i,...,k) (11) 

Let us consider the left-hand sides of these equations in more detail. Two cases are 
possible. In the first case the corresponding function zat,(tl is periodic at any h, . Then, 

98 @ I, . . ., $, 0) = Ca (2% k, . . ., &) (121 

In the second case x*,(t) is not periodic [Id and consequently 

Q, (hl, - * *, h.,, 0) = xso (2% hl, . . . , hh.) - (a, + h,) (13) 

Some of Eqs. of (11) may become identities [6 and 151. This is possible only in the first 
case when the left-hand side of equation is defined by (12). But in this case the magnitudes 

Cat (2n, A, + &,.-, h, + f&f will also be identically equal to zero. Let us divide the cor- 
responding Eqs. (9) by p once more and again insert p, = .,, = 8, = p = 0 into them, We 
shall then have 

11, (f&t, . . ., h,, 0) = C,% (2n, hl, . . ., h,) (14) 

We shall use these equations to replace the identities. Should auy equation of the type 
(141 again become au identity, we must repeat the above transformation once more, etc. If 
we come to the conclusion that the available periodicity condition cannot yield an equation 
for parameters hl.,,,, h,, then one of the sums h, + 8, must remain undetermined, This may 
arise e.g. when the system (I) has an analytic first integral [2 and 161. 

There are cases when all the roots cannot be obtained from the given system of Eqs. (11). 
Then, some equations most be replaced with other equations obtained from combinations of 
conditions of periodicity. We met such a case when ah exam 
mous system with one degree of freedom was considered [ 17 P 

le of a quasi-linear nonautono- 
. 

Eqs. (11) enable us to find parameters h,, the latter being initial amplitudes of tbe gen- 

erating solution or of a certain part of it which corresponds to its natural oscillations in 
case of quasi-linear systems. We shall call these equations the amplitude equations. Assume 
now that amplitude equations possess one or several sofutions, some of which may be re- 
oeated 

hl = hl*, . . . , h, = hk* (151 

Let us insert one of these eolution5 into (9). We obtain 

98 (hl* + Pt, . . .v b* + BP,, 14 = 0 (S=d,...,k) (16) 
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The left-hand afdea of thaae equationa become zero when PI = 4.0 = & - It = 0. Thus 

the problem fa reduced to the foflowing problem of the theory of implfcft fanctioua: to ob- 
tain from (16) the magnitudea pa in terms of p under tha condition that p, (0) * 0. 

We &afl now construct a functional detetmfnsnt of this ayatem. When /.f 4 0, we have sn 

obvious relation 
w, I fa = 8% I ah, (8. r = 1,. . a, k) (17) 

When & - . ..- & = cc P 0, derivatives alli, /t%, should be computed for hr = h,‘, there- 

fore the required fnnctionel determinant is 

rps,/ah *. * agl/~~k 

A = l * . . . . * . . . . 08) 

dg,)ah,. . . d$klahk I$.-P==% hr=hr' 

If, for any solution of (ll), this determinant is different from zero, then the solution is 
simple. We know that in this case there exists R corresponding unique analytic solution of 

116) 

P, = jIb,p (19) 
=c 

which aatiafies the conditions @, (0) = 0. 
If A P 0, then .a corresponding aolution of (11) is repeated. If the matrix of elementa in- 

cluded in (18) hsa a rank (k-l), then (b-1) magnitudes ha* + p, csn be eliminated from (la), 

yielding 

@ @r* + Fr+ & = 0 (20) 

where the subscript r falla within the range I,..., k snd the problem is reduced to determina- 
tion of #3, as an implicit function of a small parameter /.f. 

The solution of this problem is based on tbe Quisk theory of algebraic functions and on 
the Weierstrass’ theorem. Different branches j!?,@) are given by series in whole or fraction- 
al powers of cr. The number of these branches and s poasible form of their expansion in & 
are determined by the multip~ioity of solntions of amplitude equations. Multiplicity of soln- 
tions is, in turn, connected with the order of the first derivative d”@/d&s which is not van- 
ishing. Having determined j!? , we can easily find the remaining parameters. 

This method ie ractical ff the number of Eqa. in (16) is small. An example illustrating 
its use is given in P 91, where the method ia applied to a quasi-linear nonentonomoas system 
with one degree of freedom, tbe system consisting of two equations. A detailed analysis of 
Eq. (20) itself is given for tbe case of double and triple roots of the amplitude equation of a- 
quasi-linear autonomons system f 181. 

The general method of determination of 8, as implicit functions of y, in cases when the 

rank of the matrix mentioned previously is Jower than Q-1) or, when the rank is equal to (k- 
1) but the number of equations is large, was investigated by Mac-Millan in [I9 and 201. 

In order to determine the form assumed by the power series into which /?, are expanded 

and to establish the degree in which first terms of these series appear, he transformed the 
system (16) of transcendental equations, reducing it to an equivalent system of algebraic 
equations, the left-hand sides of which were finite sums of homogeneous polynomials in 8,. 
and he applied the Newton’s quadrature method to this ayatem. 

When all eIementa of the functional~determinant vanish, special methods can be need to 
determine 6, [ 143. 

When expansions of all @, into series in integral or fractional powers of 1 are known, we 
can easily obtain final expansiona of functions x.0) into series in cc. Obviously, their form 
depends on the form of expansions of p,(p). It is possible to obtain general formulas for 
some of the first coefficients of such series, or elae they can be determined by consecutive 
integration of differential equations aet up for these coefficients, 

Poincarg [d mentioned some particular cases. They are: 1) when the syatem (1) haa, in 
addition to periodic solutione of period 2n, other aolationa of period 2nm where m ia an in- 
teger (subharmonic oscillations) and 2) when tbe ayatem (1) has one or several analytic first 
integrals. hr the latter case, periodic aolntions of the ayatem will depend on one or several 
arbitrary magnitudes !t,, + fi, corresponding to tbe number of first integrala. 
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Let us now consider an autonomous nonlinear system 
ds 
.-$=x11(x1,..., _ 3&, p) (4=-i,..., n) 

(21) 

We shall retain our assumptions referring to the functions X. as they are for nonantono-- 

mous system. Initial conditions of the generating system will be given by Formula (3). 
Poincarg’s method will, in this case, exhibit some specific features resulting from the 

peculiar properties of autonomous systems. The first peculiar property is that an autono- 
mous system retains its form when time t is replaced with t + ho where ho is arbitrary. Con- 
sequently, the solution of (21) depends on h which can be found from one of the initial 

conditions. Therefore any of the sums A, + ts’ o can be chosen and, assuming that the num- 
ber of independent initial conditions is equal to k, just as in the nonautonomous case, we 
can put e.g., 

h, = 0, Pk = 0 (22) 

The second feature of the method is that period 2 of the solution of an autonomous sys- 
tem is not a specified value and it depends on p and initial conditions. Consequently, peri- 
odicity conditions for autonomous systems will be 

$S,,(T, h4 Pl, . * *I h.-.~ + &-I, PL) = x,(T)-Xrs(0) = 0 (5 = 1,. . .t n) (23) 

where $a are analytic functions of their arguments. 
First k conditions give Q-1) sums h, + 8, and the period T, while the remaining fn-k) 

conditions give initial functions p,_*. 

tin,“s~p,4~~~~~e~e~s~“~ 

we have k equations defining the period To of the genera- 

r,..., h,_,. 

$8 V,, h,,..., &-I, 0) = 0 (s = 1,..., k) (24) 

In order to bring the problem to the form which was obtained in the nonautonomous case, 
we shall eliminate the period T from the first k conditions of periodicity (23). Let us calcu- 
late the derivative of $, with respect to T when p = 0, Taking into account the property of 

last (n-k) initial conditions and Eq. (221, we obtain 

(“’ ’ “lo 
= 2,; (To) = x,0 (0) = xso* (hi, . . . , hr-1) 

Functions X l 0* cannot become zero, since in this case parameters At,..., A,,_, would be 

connected by additional relations contradicting (24). Consequently, period T can always be 
found from first k conditions of periodicity in the form of an analytic function of independent 
initial conditions and parameter ,u. The k-th condition of periodicity yields 

T = T (h, + fh,.... h-1 +&-I, PL) (2.5) 

Substituting T into the remaining (k-1) conditions, we obtain 

‘r,(k+Pl,.. *t b-l -I- Pk-1, p) = 0 (s=l,..., k-l) (26) 

where ‘$ are also analytic functions of their arguments. 

Further steps of the solution are the same as far nonautonomous systems. The number 
of equations and unknowns will however be smaller by one and derivatives of \y,, with res- 
pect to I, and fir, will have to be caiculated with ‘Ya taken as function of a function [lo], 
e.g. 

a! a*, B 3 L-IT 

8% =ah, + dT ah, (s,r=l,.. .,k-$4) (27) 

Period of an autonomous system can be written as a sum 

T =T, +a (28) 

where To = T,,(AL,..., hksl) is the period of the generating solution and u becomes zero 

when f~ = 0. When the system is quasi-linear, To is independent of initial conditions. A meth- 
od for elimination of a is given for such systems in e.g. 1181. 

When analytic first integrals which are time independent 121 appear in the autonomous 
system, periodic solutions will depend, as in the nonautonomous case, on the corresponding 
number of arbitrary magnitudes ha + p,. The existence of even one first integral makes the 
construction of a periodic solution with a given period possible. 

When the sofotion is expanded into a series in integral or fractional powers of p, we must 
replace time I with another variable beforehand, since the period T in time t depends on cc. A 
change of variable is performed so as to make the period independent of p and equal to the 
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period of the generating solution. This enables us to represent the solution in the form of 
a series in integral or fractional powers of cc, whose coefficients have a period independent 
of p [5 and 181. 

Summing it all up we must note that fictitious degeneration of the system (determinant 
A becoming equal to zero) may be due to the following causes: 11 failure to take into con- 
sideration the link between the parameters h, and B #; 2) existence of dependence between 
initial conditions in different equations; 31 appearance of /J as a multiplier in any one con- 
dition of periodicity; 4) existence of special casea of amplitude equations. If all these 
causes are removed, then the system degenerates, in fact, in only two cases: when ampli- 
tude equations have repeated solutions, or when the system has first integrals. 

We can also interpret Poincark’s method as one establishing the extension of periodic 
solutions of the generating system to the initial system. We have shown previously that sol- 
utions of the generating system can either be isolated or else they may form a family of 
solutions depending on some parameters. However, if the initial system has no first inte- 
grals and if amplitude equations have a finite number of solutions, then only a finite number 
of periodic solutions of the generating system can become periodic solutions of the initial 
system. On the other hand, some periodic solutions of the generating system may have more 
than one corresponding solution of the initial system. The principal aim of Poinca&s meth- 
od is to determine these calues of h,, which establish one-to-one correspondence between 
these periodic solutions of the-generating and initial systems, which pass from one into the 
other. Multiple solutions of amplitude equations are all counted as separate, and their nnm- 
ber defines the degree of multiplicity. 

The problem of convergence of series representing periodic solutions has not, so far, 
received sufficient attention. Proofs for theorems on the convergence of these series for 
nonautonomous systems of general type when ,u is sufficiently small, are given in [6]. Esti- 
mates of radii of convergence of series or estimates of degrees of approximation achieved 
by use of the first few terms, are given only fo a few isolated cases and are, as a rule, not 
very effective. Nevertheless, in spite of the fact that only a few approximations are obtained 
in practice and that no effective method exists for obtaining estimates, Poincarg’s method i 
is completely rigorous. 

In conclusion we note that modifications of Poincark’s method exist. Here we may men- 
tion the method of selecting arbitrary constants of integration due to Bulgakov [4]. Another 
unquestionable modification due to Shimanov [ 211 results in the method of auxilliary func- 
tions, which is useful in proofs of existence of periodic solutions in various cases. 
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